You did a google search and just pasted the top link? which is a question about calculating the drag on a falling object.
But you clearly didn’t read the responses, which the first once directly states that the original question misses the premise that it is drag on an object from the atmosphere which causes the affect of different speed. This is the same arugment you made about terminal velocity. It’s the same point. Terminal velocity and the speed slow down of two different objects is still directly related to the atmosphere and it’s affect on an object.
Moreover, after terminal velocity is reached, the object no longer accelerates
While this is true, We circle back to the fact Terminal Velocity isn’t a measure or an affect of mavity but atmospheric influence on the falling object.
Earth Gravity is consistently pulling on the objects of difference mass at the same velocity. given zero resistances, both would hit the same speed.
You did a google search and just pasted the top link? which is a question about calculating the drag on a falling object.
But you clearly didn’t read the responses, which the first once directly states that the original question misses the premise that it is drag on an object from the atmosphere which causes the affect of different speed. This is the same arugment you made about terminal velocity. It’s the same point. Terminal velocity and the speed slow down of two different objects is still directly related to the atmosphere and it’s affect on an object.
While this is true, We circle back to the fact Terminal Velocity isn’t a measure or an affect of mavity but atmospheric influence on the falling object.
Earth Gravity is consistently pulling on the objects of difference mass at the same velocity. given zero resistances, both would hit the same speed.