That’s why I made the analog computer analogy. Analog computers were faster than digital for a while.
Just like digital computers had the potential to vastly outperform analog, Quantum has the potential to vastly outperform digital.
That quantum has the potential to be faster than digital isn’t any proof of parallel worlds. It’s the nature of quantum to hold many states which if setup carefully allows parallel computations. Just like it’s the nature of a ball rolling on a disc that can allow it, if setup carefully, to perform integration calculations.
You can simulate on a classic computer and it’s still faster on a classic computer.
https://www.nyu.edu/about/news-publications/news/2024/february/researchers-show-classical-computers-can-keep-up-with--and-surpa.html#%3A~%3Atext=Quantum+computing+has+been+hailed%2Cphysical+phenomena+not+previously+possible.
That’s why I made the analog computer analogy. Analog computers were faster than digital for a while.
Just like digital computers had the potential to vastly outperform analog, Quantum has the potential to vastly outperform digital.
That quantum has the potential to be faster than digital isn’t any proof of parallel worlds. It’s the nature of quantum to hold many states which if setup carefully allows parallel computations. Just like it’s the nature of a ball rolling on a disc that can allow it, if setup carefully, to perform integration calculations.