Yesterday Mistral AI released a new language model called Mistral 7B. @justnasty@lemmy.kya.moe already posted the Sliding attention part here in LocalLLaMA, yesterday. But I think the model and the company behind that are even more noteworthy and the release of the model is worth it’s own post.

Mistral 7B is not based on Llama. And they claim it outperforms Llama2 13B on all benchmarks (at it’s size of 7B). It has additional coding abilities and a 8k sequence length. And it’s released under the Apache 2.0 license. So truly an ‘open’ model, usable without restrictions. [Edit: Unfortunately I couldn’t find the dataset or a paper. They call it ‘open-weight’. So my conclusion regarding the open-ness might be a bit premature. We’ll see.]

(It uses Grouped-query attention and Sliding Window Attention.)

Also worth to note: Mistral AI (the company) is based in Paris. They are one of the few big european AI startups and collected $113 million funding in June.

I’ve tried it and it indeed looks promising. It certainly has features that distinguishes it from Llama. And I like the competition. Our world is currently completely dominated by Meta. And if it performs exceptionally well at its size, I hope people pick up on it and fine-tune it for all kinds of specific tasks. (The lack of a dataset and detail regarding the training could be a downside, though. These were not included in this initial release of the model.)


EDIT 2023-10-12: Paper released at: https://arxiv.org/abs/2310.06825 (But I’d say no new information in it, they mostly copied their announcement)

As of now, it is clear they don’t want to publish any details about the training.

  • rufusOP
    link
    fedilink
    English
    arrow-up
    3
    ·
    edit-2
    1 year ago

    Thanks for paying close attention. I just threw kobold.cpp at it and was amazed by the speed of a 7B model on my old PC ;-) Let it complete a few stories and asked the instruct-tuned variant about llamas and other facts… Somehow missed that there are still things missing. My tests for simple and short texts seemed fine.

    Another thing I somehow completely missed is the release of Qwen. This is funded by Alibaba? I need to read up on it.

    Regarding the fine-tuning attempts… Idk. My personal opinion is: I’m going to be patient and see. Things are always moving fast and the community (not the researchers) sometimes do silly stuff. And most of the tools are probably focused on Llama as of now. So it’ll probably take more than a few hours to see decent results. But I’m sure the community will have a try. Especially if it turns out the performance is really as good or better than Llama 2.