xkcd: Coordinate Precision but pi (π)?

I tried looking for some answer but found mostly

  • People reciting pi
  • People teaching how to memorize pi
  • How to calculate pi using different formula
  • How many digits NASA uses

Update question to be more specific

In case someone see this later, what is the most advanced object you can build or perform its task, with different length of pi?

0, 3 => you can’t make a full circle

1, 3.1 => very wobbly circle

2, 3.14 => perfect hole on a beach

3, 3.142 => ??

4, 3.1416 => ??

5, 3.14159 => ??

Old question below

In practice, the majority of people will never require any extra digit past 3.14. Some engineering may go to 3.1416. And unless you are doing space stuff 3.14159 is probably more than sufficient.

But at which point do a situation require extra digit?
From 3 to 3.1 to 3.14 and so on.

My non-existing rubber duck told me I can just plug these into a graphing calculator. facepalm

y=(2πx−(2·3.14x))

y=abs(2πx−(2·3.142x))

y=abs(2πx−(2·3.1416x))

y=(2πx−(2·3.14159x))

Got adequate answer from @dual_sport_dork and @howrar
Any extra example of big object and its minimum pi approximation still welcome.

  • Chobbes@lemmy.world
    link
    fedilink
    arrow-up
    7
    ·
    vor 1 Jahr

    There’s facts about pi we don’t know, though. We have not proved whether or not pi contains every finite sequence of digits. A breakthrough about this will probably have little to do with brute force computing billions of digits of pi, but maybe there can be a clue there. As far as I know we basically just calculate a bunch of pi to flex. It’s the mathematical equivalent of walking around shirtless to show off your abs.