We demonstrate a situation in which Large Language Models, trained to be helpful, harmless, and honest, can display misaligned behavior and strategically deceive their users about this behavior without being instructed to do so. Concretely, we deploy GPT-4 as an agent in a realistic, simulated environment, where it assumes the role of an autonomous stock trading agent. Within this environment, the model obtains an insider tip about a lucrative stock trade and acts upon it despite knowing that insider trading is disapproved of by company management. When reporting to its manager, the model consistently hides the genuine reasons behind its trading decision.
It seems like there’s a lot of common misunderstandings about LLMs and how they work, this quick 2.5 minute introduction does a pretty good job of explaining it in brief, for a more in-depth look at how to build a very basic LLM that writes infinite Shakespeare, this video goes over the details. It illustrates how LLMs work by choosing the next letter or token (part of a word) probabilistically.
Here is an alternative Piped link(s):
this quick 2.5 minute introduction
this video
Piped is a privacy-respecting open-source alternative frontend to YouTube.
I’m open-source; check me out at GitHub.