Day 25: Snowverload

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

  • cvttsd2si@programming.dev
    link
    fedilink
    arrow-up
    4
    ·
    1 year ago

    Scala3

    all done!

    def parseLine(a: String): List[UnDiEdge[String]] = a match
        case s"$n: $r" => r.split(" ").map(_ ~ n).toList
        case _ => List()
    
    def removeShortestPath(g: Graph[String, UnDiEdge[String]], ns: List[String]) =
        g.removedAll(g.get(ns(0)).shortestPathTo(g.get(ns(1))).map(_.edges.map(_.outer)).getOrElse(List()))
    
    def removeTriple(g: Graph[String, UnDiEdge[String]], ns: List[String]) =
        List.fill(3)(ns).foldLeft(g)(removeShortestPath)
    
    def division(g: Graph[String, UnDiEdge[String]]): Option[Long] =
        val t = g.componentTraverser()
        Option.when(t.size == 2)(t.map(_.nodes.size).product)
    
    def task1(a: List[String]): Long = 
        val g = Graph() ++ a.flatMap(parseLine)
        g.nodes.toList.combinations(2).map(a => removeTriple(g, a.map(_.outer))).flatMap(division).take(1).toList.head
    
  • sjmulder@beehaw.org
    link
    fedilink
    arrow-up
    2
    ·
    1 year ago

    Python (Not C…)

    (Posting from an alt because SDF is having issues)

    A graph problem 😬​. There are well-known algorithms but none trivial to implement in C.

    I tried dividing the nodes into two groups and then moving the node with the worst in-group/out-group edge balance - a Wish version of the Kernighan-Lin algorithm. As expected, it got stuck in a local optimum for the real input and random prodding didn’t help.

    Programming is programming and libraries are fair game so I went to Python and used NetworkX which was my first time using the library but so easy to use! Maybe I’ll go back and do it in C someday and implement the algorithm myself.

    #!/usr/bin/env python3
    import sys
    import re
    from networkx import Graph
    from networkx.algorithms.community import greedy_modularity_communities
    
    G = Graph()
    
    for line in sys.stdin.readlines():
      words = re.findall("\\w+", line)
      for to in words[1:]:
        G.add_edge(words[0], to)
    
    coms = greedy_modularity_communities(G, best_n=2)
    
    print("25:", len(coms[0]) * len(coms[1]))
    

    https://github.com/sjmulder/aoc/tree/master/2023/python/day25.py

  • Treeniks@lemmy.ml
    link
    fedilink
    English
    arrow-up
    1
    ·
    edit-2
    1 year ago

    Rust

    github codeberg gitlab

    First tried a really slow brute force, but after waiting many minutes heard others talk of Karger’s Algorithm, so I implemented that.

    use rand::prelude::*;
    use std::collections::HashSet;
    
    type Graph = (V, E);
    
    type V = HashSet<String>;
    type E = Vec<(String, String)>;
    
    fn parse_input(input: &str) -> Graph {
        let mut vertices = HashSet::new();
        let mut edges = Vec::new();
    
        for line in input.trim().lines() {
            let mut it = line.split(':');
    
            let left = it.next().unwrap();
            vertices.insert(left.to_owned());
    
            for right in it.next().unwrap().trim().split_whitespace() {
                vertices.insert(right.to_owned());
                edges.push((left.to_owned(), right.to_owned()));
            }
        }
    
        (vertices, edges)
    }
    
    fn part1(input: &str) -> usize {
        let (vertices, edges) = parse_input(input);
    
        let mut rng = rand::thread_rng();
    
        // Karger's Algorithm
        loop {
            let mut vertices = vertices.clone();
            let mut edges = edges.clone();
            while vertices.len() > 2 {
                let i = rng.gen_range(0..edges.len());
                let (v1, v2) = edges[i].clone();
    
                // contract the edge
                edges.swap_remove(i);
                vertices.remove(&v1);
                vertices.remove(&v2);
    
                let new_v = format!("{}:{}", v1, v2);
                vertices.insert(new_v.clone());
    
                for (e1, e2) in edges.iter_mut() {
                    if *e1 == v1 || *e1 == v2 {
                        *e1 = new_v.clone()
                    }
                    if *e2 == v1 || *e2 == v2 {
                        *e2 = new_v.clone()
                    }
                }
    
                // remove loops
                let mut j = 0;
                while j < edges.len() {
                    let (e1, e2) = &edges[j];
                    if e1 == e2 {
                        edges.swap_remove(j);
                    } else {
                        j += 1;
                    }
                }
            }
    
            if edges.len() == 3 {
                break vertices
                    .iter()
                    .map(|s| s.split(':').count())
                    .product::<usize>();
            }
        }
    }
    
  • hades@lemm.ee
    link
    fedilink
    arrow-up
    1
    ·
    1 year ago

    Python

    import networkx as nx
    
    from .solver import Solver
    
    
    class Day25(Solver):
    
      def __init__(self):
        super().__init__(25)
    
      def presolve(self, input: str):
        self.graph = nx.Graph()
        for line in input.splitlines():
          from_, to_line = line.split(': ')
          for to in to_line.split(' '):
            self.graph.add_edge(from_, to)
    
      def solve_first_star(self) -> int | str:
        cut_value, partition = nx.algorithms.stoer_wagner(self.graph)
        return len(partition[0]) * len(partition[1])