Wer sich für einen besonders großen Fernseher entscheidet, muss mit hohen Stromkosten rechnen. Wie Berechnungen von Vergleichsportalen zeigen, können einige Geräte wahre Energiefresser sein.
Ja, klar. Am Ende war die Frage eigentlich nur “wie wirkt sich das Seitenverhältnis auf den Vorfaktor aus”. Und die Antwort war “eigentlich gar nicht, im Sinne einer Abschätzung”, da hat @captain_unicode den deutlich kürzeren Weg zu einem sinnvollen Ergebnis gewählt.
Das ist keine Abschätzung, das ist exakt. Das Prinzip, dass für ähnliche Formen jedes proportional gewählte Flächenmaß sich wie jedes proportional gewählte Längenmaß im Quadrat verhält, gilt für jede beliebige Form: Bildschirmfläche ~ Diagonale², Kreisfläche ~ Radius² ~ Durchmesser², Dreiecksfläche ~ Seitenlängen² ~ Grundseite² ~ Höhe², aber nicht nur für regelmäßige Formen, egal welche Menge im R² Du nimmst, wenn Du die proportional skalierst skaliert das Flächenmaß mit dem Skalierungsfaktor im Quadrat und das Längenmaß direkt mit dem Faktor. Wenn Du das weißt brauchst Du die Rechnung nicht.
Das “eigentlich” kannst du streichen, wenn es um das Verhältnis und nicht um den Flächeninhalt selbst geht. Seine Formel ist das Ergebnis deiner Herleitung. Nur deshalb ist sie so kurz.
Ja, klar. Am Ende war die Frage eigentlich nur “wie wirkt sich das Seitenverhältnis auf den Vorfaktor aus”. Und die Antwort war “eigentlich gar nicht, im Sinne einer Abschätzung”, da hat @captain_unicode den deutlich kürzeren Weg zu einem sinnvollen Ergebnis gewählt.
Das ist keine Abschätzung, das ist exakt. Das Prinzip, dass für ähnliche Formen jedes proportional gewählte Flächenmaß sich wie jedes proportional gewählte Längenmaß im Quadrat verhält, gilt für jede beliebige Form: Bildschirmfläche ~ Diagonale², Kreisfläche ~ Radius² ~ Durchmesser², Dreiecksfläche ~ Seitenlängen² ~ Grundseite² ~ Höhe², aber nicht nur für regelmäßige Formen, egal welche Menge im R² Du nimmst, wenn Du die proportional skalierst skaliert das Flächenmaß mit dem Skalierungsfaktor im Quadrat und das Längenmaß direkt mit dem Faktor. Wenn Du das weißt brauchst Du die Rechnung nicht.
Das “eigentlich” kannst du streichen, wenn es um das Verhältnis und nicht um den Flächeninhalt selbst geht. Seine Formel ist das Ergebnis deiner Herleitung. Nur deshalb ist sie so kurz.